
What if I told you

not all tech debt is bad?
What if I told you not all tech debt is bad? 1

Many entrepreneurs whose business depends on a software product dread the

words “technical debt.” They know that it effectively means developers nagging

them about fixing “critical” issues (a critical issue being, seemingly, absolutely

everything), spending time and money on invisible fixes, and slowing down the

release of necessary new features.

Those who don’t dread technical debt, simply don’t know what it is. Yet.

Because at Gorrion we know from experience of developing over 200 projects

that when debt is strategic, informed, and properly managed, it is the best tool

in your growth acceleration toolbox.

In this ebook we explain what technical debt is and isn’t, why it’s good and why  

it can be bad, how to use it strategically and stay on top of it, and finally  

– what to do when you’re in too deep.
 

So how come we can so confidently tell you that technical debt isn’t necessarily

a bad thing?

2024

What if I told you not all tech debt is bad? 2

Table of contents
What is technical debt?

 It's a loan

 It's not a surety bond

When is technical debt good?

 Throwaway prototypes

 MVPs

 New features

When and why is technical

debt bad?

 The consequences

 Resource consumption

 Deadlock

 Premature optimization

Why it’s so hard to pay off

 “Don’t fix what ain’t broken”

 That’s a you problem

 Fictitious force

 Cutting costs

How to manage technical debt  

– the right way

 Awareness

 Assessment

 Sustainable development

 Rotational focus

Contact

Gorrion’s marketing style guide 3

What is technical debt?

Our Chief Innovation Officer, Dominik Guzy,  
explains technical debt this way:

Tech debt happens when you make shortcuts and rushed decisions in the code,  

which builds up to the point where you must return to it.

Imagine that you can develop a feature in your app in two ways: one is “quick and dirty,” the other one is “proper” (and more time

consuming). If you choose the first route, you have just incurred technical debt. The feature will work now, but there’s no guarantee it

will work in the future or that it won’t interfere with any further deployments. If it breaks or affects your product in any other way,  

you will have to fix it, i.e. pay off your debt.
 

2024

What if I told you not all tech debt is bad? 4

Kent Beck – the creator of extreme programming  
– defines three stages of software development:

make it run make it fast make it right

Making software run means simply writing code that works, i.e. can be read by computers.

Making it right means writing code that is stable and polished to an acceptable standard.  

Making it fast means optimizing it to a point that it performs better and scales  

(this encompasses testability and extensibility of the code).

2024

What if I told you not all tech debt is bad? 5

It's a loan You may have already picked up on financial lingo and banking

metaphors. That was the intention of Ward Cunningham,  

who coined this term. The easiest way to think of technical debt  

and to manage it is by looking at it as if it were financial debt.

Yes, many people will say “all debt is bad,” but even more people

will say it’s a great way to leverage yourself, and some will say it’s

the only way to dig themselves out of a hole. Everyone knows debts

must be paid off and everyone understands that they come with  

an interest. We can probably also all agree that taking more debt  

to pay off a previous debt is a bad idea and must be avoided at all

cost. All these things are true both when we speak of money and

when we speak of code. The difference is, with technical debt

you’re effectively borrowing time and not money itself.

2024

What if I told you not all tech debt is bad? 6

https://youtu.be/pqeJFYwnkjE?si=2lnfUUX8hvnr6naH

It's not
a surety
bond

Without going into philosophical debates, it’s important to note

what technical debt is not.

It’s a different thing when developers consciously make short term

sacrifices, take shortcuts, or find workarounds due to project

constraints, but they are aware of the consequences and intend  

to fix their code in the future. Imagine your app going down  

due to a critical error that must be fixed immediately by any means

necessary so that the software can be operational again.  

The fix is dirty, but it works for now. You’ve just taken a loan  

to stay afloat.

It’s an entirely different thing when developers don’t know (or don’t

care) what they’re doing, but they’re doing it anyway. Imagine you

hire a team of unskilled developers who don’t have experience  

in your field or technology of choice, and they just trudge ahead

creating shoddy software that looks like it’s working for now.  

That’s not a loan – you’ve just signed a surety bond for a very

unreliable debtor and there will come a time that you have to pay it,

whether you like it or not.
 

Technical debt is not simply “bad code.”

2024

What if I told you not all tech debt is bad? 7

We mention this because, historically, Gorrion has occasionally

taken over projects where this happened. The code was so

bad that it was no longer feasible to add new features without

performing near-impossible “circus tricks” that would take a

whole lot of unnecessary time and money. There was nothing

else to do, but to rewrite the code from scratch In instances

such as these, it’s difficult to speak of “technical debt” and not

a “botched job.”

It’s important to note, though, that not everyone would agree.

Martin Fowler – an expert on the subject of technical debt  

and a software developer himself – came up with the idea  

of “technical debt quadrants” that classify debt based on its

intentionality and rationality.

It looks something like this:

RECKLESS

the team is aware of “the right
way to do things,” but decides to
risk anyway for a reason

“we have to fix this critical error
at all cost”

the team is not aware of “the right
way” and the consequences but
proceeds nonetheless*

“that’s what ChatGPT spewed
out, so that’s what we’re going to
use”

the team was not aware either of
how to do something or what
consequences it would have at
the time of making the decision,
but have since learned

“we’ve done this wrong, here’s
how we’re going to fix it”
 

the team is acutely aware of high
risk and possible consequences
and makes a conscious decision
to move forward

“this is good enough, let’s ship it
as is and dedicate time in the
next sprint to polish it”
 

PRUDENTinadvertent

DELIBERATE

*We will not be covering instances of inadvertent and reckless debt in this ebook

2024

What if I told you not all tech debt is bad? 8

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

When is technical debt good?
Now that we’re all on the same page as to what technical debt is, we can

finally answer this seemingly rhetorical question: can technical debt be good?

And we at Gorrion say: yes, it very much can! There are instances where

you’d want to welcome it as a friend.  

This is especially true for projects (or rather: stages of projects) where you

need to prioritize speed over quality.

2024

What if I told you not all tech debt is bad? 9

Throwaway
prototypes

You create a prototype or a PoC (proof of concept) to find a

solution that simply shows a problem can be solved – nothing less,

nothing more. It doesn’t need the best performance,  

well-architected code, or massive test code coverage.

The idea behind prototypes and PoCs is that they should be as fast

and as inexpensive as possible. They make for a very basic

scaffolding to the final product so if you have to knock them down

and start again, there’s very little harm done.

Tech debt in throwaway prototypes is like taking a zero-interest

loan – doesn’t really cost you a thing (as long as you pay it off on

time) but it’s a quick way to get what you want.

2024

What if I told you not all tech debt is bad? 10

MVPs Then we have the case of startups and MVPs (minimum viable

products). The situation here is somewhat similar: an MVP is

meant to prove something (i.e. market demand) and, as the name

suggests, it provides the bare minimum.

Oftentimes coming up with an MVP requires some shortcuts.  

This can either be because of scarce resources – a gripe startups

only know so well! – or time pressure. In any case, tech debt here

is like a mortgage. It’s frequently a “necessary evil” to get things

going and a long-term burden, however – if taken responsibly

and paid off wisely – it’s a great leverage for a lifetime

investment.

2024

What if I told you not all tech debt is bad? 11

Take as an example.

Before it took over the world by storm, it was just a startup. In 2016 they already had an MVP and a successful

presence in several cities in the US. They moved fast and validated their idea but they were also conscious of their

product’s limitations. That’s when they decided to hire Gergely Orosz, the author of The Software Engineer’s

Guidebook, to “rewrite the Uber app.” They found the right time and the right people to pay the debt,  

which allowed them to scale and grow into a global phenomenon.

2024

What if I told you not all tech debt is bad? 12

New
features

Not only new businesses are allowed to go into hock, though!  

Even mature organizations can – and perhaps even should  

– run up some technical debt in certain situations.

Imagine you have a mature product, but you’re looking into new

niches or business opportunities. There’s already some traction

there, perhaps even some competition, so speed is critical  

– to be successful, you need to be the first to the market.  

However, you don’t really want to put all of your chips on the table  

– you don’t know if there will be any interest in this new feature  

of yours or you’re not sure this market is really right for you.

In this case, even though you have a mature product, you treat the

new feature very much like an MVP. In order to maintain speed and

validate your idea quickly, you use technical debt as a leverage.  

If it pays off – great, if it doesn’t – no harm done!

2024

What if I told you not all tech debt is bad? 13

When and why is

technical debt bad?
If technical debt is so good then why does it get such a bad rep?

Why isn’t everybody talking about it?

2024

What if I told you not all tech debt is bad? 14

Perhaps you should think of it the other way round.
 

Everyone has at least some degree of technical debt, the thing is – not in a good sense, like in the examples above.

Technical debt has become a sad reality of all software development, unavoidable in all projects due to pressures

from the business, inadequate resources, and other factors. Companies will simply push for new features to

generate more revenue or they will “optimize” resources to squeeze out more from the revenue they already have.

Engineers are then forced to find shortcuts to deliver on the expectations.

It's therefore important for businesses to understand the consequences of technical debt and how it affects not just

the code, not just the product, but the business as a whole.
 

2024

What if I told you not all tech debt is bad? 15

The
consequences

If you’ve read this far, congratulations, we’ve just reached perhaps

the most important part. Whether good or bad, intentional or not,

tech debt always has consequences. To use Martin Fowler’s

terminology, being unaware of those would be imprudent.

2024

What if I told you not all tech debt is bad? 16

Resource
consumption

First and foremost, paying off tech debt takes time and resources.

After all, if the right solution was the easiest and the quickest to

develop, it would have been implemented from the start. Trey

Huffine even defined technical debt as “any code added now that

will take more work to fix at a later time.” Going back to fix things

requires the team to take a step back, which will slow down or even

halt new development entirely.

From a business perspective, it’s important to remember you’re

slowing down so that you can speed up later. We see this regularly

– clients are hesitant to allocate time to fixes, prioritize

maintenance over development, do any work that doesn’t show

anything new. This is a shortsighted mistake. While it does take time

and resources to pay off technical debt, this will provide returns in

easier time for developers, better product, and more growth

opportunities in the future. Not to mention consequences of

neglecting technical debt, which are far worse and more

symptomatic than temporary slowdowns.
 

2024

What if I told you not all tech debt is bad? 17

https://www.freecodecamp.org/news/what-is-technical-debt-and-why-do-most-startups-have-it-9a54458daabf/
https://www.freecodecamp.org/news/what-is-technical-debt-and-why-do-most-startups-have-it-9a54458daabf/

Deadlock
As we’ve mentioned before, all debts must be paid. With technical

debt, if you don’t do it yourself, your code will do it for you. If left

unattended, tech debt builds up to a point where it causes

deadlock.

A “deadlock” is a technical term for when two (or more) processes

are running but neither is able to finish because they need more

resources that are blocked by the other process. This creates an

endless loop or, in other words, a deadlock. While you needn’t

understand the technicalities, it’s easy to understand that, without

optimization, at some point the code will become too complex to

scale or even to perform at all.

At this point tech debt is not just a problem for developers, it’s a

problem for the entire business, as the application can’t grow

anymore and it may in fact slow down, show an increased number

of bugs, or shut down altogether.

2024

What if I told you not all tech debt is bad? 18

Premature
optimization

It may seem incredulous but technical debt can be a problem even

when there isn’t any technical debt. This is called premature

optimization and it occurs when the code is optimized too early,

when priorities are misplaced or when complexity and abstractions

are addressed over necessities.

Premature optimization isn’t necessarily a problem for developers.

In fact, some particularly opinionated developers argue that all

tech debt is bad and “no debt” should be the default state.

However, it’s a huge problem for the business. It means that

resources were poorly allocated (and therefore lost), priorities

weren’t communicated clearly, and the company lost profit  

and/or opportunities as a consequence.
 
 

2024

What if I told you not all tech debt is bad? 19

Why it’s so hard to pay off
We’ve already mentioned the struggle we sometimes experience personally when working with clients that is,

frankly, prevalent in software development everywhere – the resistance from business stakeholders.  

Let’s face it, to non-technical people technical debt is much less visible than actual financial debt that they

know and understand could sink their company. And technical teams demanding technical debt be paid off

look far less threatening than creditors and debt collectors. And so, technical debt is deprioritized despite

being as dangerous as (if not more dangerous than) financial debt.

From our experience, these are some of the most common “blinkers” businesses wear  

when it comes to technical debt.

2024

What if I told you not all tech debt is bad? 20

“Don’t fix what
ain’t broken”

Technical Debt

Bug

Error

Deprecated Code

If the software is working, surely it means everything’s ok with the

code as well, right…? Well, wrong.

Businesses are often ignorant about existing or potential issues with

their product simply because of a poor understanding of the more

technical aspects. And, admittedly, it is hard to be worried about

things we can’t see and/or understand, like climate change and

technical debt. So, following the old adage of “don’t fix what ain’t

broken,” they aren’t really invested in improving the code unless it is

actually necessary (i.e. the app breaks).
 

2024

What if I told you not all tech debt is bad? 21

That’s a you
problem So we’ve established that business stakeholders rarely understand

the implications of technical debt, but it’s equally important to point

out they are also rarely affected by it. Conversely, developers both

understand it very well and find it significantly more painful. Code

that’s not optimized is harder to maintain and to integrate, resulting

in more workload and harder times for developers.

Without certain “empathy” for their work (or at least for how their

wages affect the payroll) it’s hard to agree what goals to tackle

next and to prioritize things that would make that workload easier,

even if – ultimately – it’s for the benefit of the entire business.

2024

What if I told you not all tech debt is bad? 22

Fictitious force Let’s face it, “we’ve developed this new thing” will always sound

more appealing to business leaders than “we’ve fixed this old thing

you didn’t know was broken.” That’s somewhat understandable,

because new features mean new opportunities to sell, and this

means more revenue and more opportunities to grow. Which is why,

when the product starts to get some traction on the market, it’s very

hard for the business to slow down (much less stop altogether!) and

potentially disturb that growing trend. This “fictitious force” that

drives business leaders and the willingness to please them that

motivates other stakeholders leads them to neglect technical debt

in pursuit of novelty.

2024

What if I told you not all tech debt is bad? 23

Cutting costs Finally, there’s an old Polish saying that goes something like this: if

you don’t understand what the motive is then the motive is always

money. So if you don’t know why businesses don’t pay off technical

debt, it’s simply because it’s cheaper that way. After all, as we’ve

already established, fixing issues takes a significant amount of time

and effort and affects progress along the way.

There’s a flipside to this type of thinking, though, because all is fine

and well as long as the code is still functional. However, without

paying off technical debt, at some point it won’t be so fine, and you

will need to refactor the entire application. That, our friend, is not at

all cheaper… to say the least.

2024

What if I told you not all tech debt is bad? 24

How to manage technical debt
– the right way
So too little debt is bad and too much debt is bad, and technical debt can be both good and disastrous…

If we’ve learned anything from this ebook, it’s this: moderation in all things.

So how should you manage your technical debt so that it works in your favor and not against you?  

Here are some strategies.

2024

What if I told you not all tech debt is bad? 25

Awareness

The first step towards fighting off

technical debt is… realizing that it exists.

As we’ve said before, lack of technical

understanding often leads business roles

to ignore the problem, which results in

teams being unable to integrate new

features smoothly or even at all.

To prevent that, you need to make a

conscious decision to keep tabs on your

technical debt and use it strategically.

This requires you not just to talk to

developers, but also to make them an

integral part of business decision making

process.

2024

What if I told you not all tech debt is bad? 26

Assessment

An important element of awareness is assessment. Not all technical debt

was created equal, meaning – not all of it is equally painful or dangerous

for your business.

A relatively easy way to assess your technical debt is based on the SQALE

method (which, in itself, is very much not relatively easy). Every issue

reported by the development team should be scored from 1 to 5 (1 being

“not much” and 5 – “a lot”) on three scales:
 

probability
how likely is it that this issue will ever cause any

problems?

impact
if problems do occur, to what degree will they

affect the business – what’s the worst case

scenario?

cost
how much time and resources will we have

to invest in fixing this issue?

Issues with the highest score on all scales naturally need to be

prioritized first.

2024

What if I told you not all tech debt is bad? 27

http://sqale.org/
http://sqale.org/

Sustainable
development

Once you are aware of your tech debt and have it assessed,

there are some ways to manage it without disrupting the whole

development cycle.

For example, you can decide to allocate around 10-20% of each

sprint to addressing code refactoring, testing, and technical

debt issues. However, this time should be used for proactive

maintenance rather than reacting to problems when they

become critical. By regularly scheduling this maintenance,

teams can keep a healthy codebase, avoid bottlenecks, and

ensure that the system remains adaptable to future changes.

Importantly, the specific percentage allocated for maintenance

might vary depending on the project, team’s experience,

product complexity, and most importantly, the amount  

of technical debt.
 

2024

What if I told you not all tech debt is bad? 28

Rotational
focus Alternatively, you can decide to rotate your team’s focus every few

sprints and dedicate a full sprint (or cycle) exclusively to tackling

technical debt and reducing system complexity.

This allows your team to periodically refocus and refine the system

architecture which reduces technical debt without causing long-

term development delays.

2024

What if I told you not all tech debt is bad? 29

And if all else fails…?
 

If you’re reading this because you already have an existing product and are struggling with unmanaged technical

debt, but the solutions we’ve provided don’t seem to be enough, you need to face the possibility that you’re

already in too deep. In these instances, there’s often nothing else to do but to perform a complete refactoring

of the software. The sooner, the better.

If you suspect this might be the case and you don’t know how to approach this problem, we can help. We’ve

worked with multiple products that seemed like they’re beyond repair when they first arrived on our doorstep,

and yet they are now operational and successful.

Let’s see if we can help you, too!

2024

What if I told you not all tech debt is bad? 30

Contact us

leo.baz@gorrion.io

+48 511 535 131

www.gorrion.io

www.clutch.co/profile/gorrion

www.linkedin.com/company/gorrion

http://www.clutch.co/profile/gorrion
http://www.linkedin.com/company/gorrion
www.gorrion.io
www.clutch.co/profile/gorrion
www.linkedin.com/company/gorrion
mailto: leo.baz@gorrion.io
phone: +48511535131

